Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Biosensors (Basel) ; 12(12)2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2142508

ABSTRACT

A new transmission route of SARS-CoV-2 through food was recently considered by the World Health Organization (WHO), and, given the pandemic scenario, the search for fast, sensitive, and low-cost methods is necessary. Biosensors have become a viable alternative for large-scale testing because they overcome the limitations of standard techniques. Herein, we investigated the ability of gold spherical nanoparticles (AuNPs) functionalized with oligonucleotides to detect SARS-CoV-2 and demonstrated their potential to be used as plasmonic nanobiosensors. The loop-mediated isothermal amplification (LAMP) technique was used to amplify the viral genetic material from the raw virus-containing solution without any preparation. The detection of virus presence or absence was performed by ultraviolet-visible (UV-Vis) absorption spectroscopy, by monitoring the absorption band of the surface plasmonic resonance (SPR) of the AuNPs. The displacement of the peak by 525 nm from the functionalized AuNPs indicated the absence of the virus (particular region of gold). On the other hand, the region ~300 nm indicated the presence of the virus when RNA bound to the functionalized AuNPs. The nanobiosensor system was designed to detect a region of the N gene in a dynamic concentration range from 0.1 to 50 × 103 ng·mL-1 with a limit of detection (LOD) of 1 ng·mL-1 (2.7 × 103 copy per µL), indicating excellent sensitivity. The nanobiosensor was applied to detect the SARS-CoV-2 virus on the surfaces of vegetables and showed 100% accuracy compared to the standard quantitative reverse transcription polymerase chain reaction (RT-qPCR) technique. Therefore, the nanobiosensor is sensitive, selective, and simple, providing a viable alternative for the rapid detection of SARS-CoV-2 in ready-to-eat vegetables.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Gold , Surface Plasmon Resonance , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity
2.
Opt Laser Technol ; 157: 108763, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2105676

ABSTRACT

The coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a major public health outbreak in late 2019 and was proclaimed a global pandemic in March 2020. A reflectometric-based RNA biosensor was developed by using cysteamine-stabilized gold nanoparticles (cysAuNPs) as the colorimetric probe for bioassay of COVID-19 RNA (SARS-CoV-2 RNA) sequence. The cysAuNPs aggregated in the presence of DNA probes via cationic and anionic electrostatic attraction between the positively charged cysteamine ligands and the negatively charged sugar-phosphate backbone of DNA, whilst in the presence of target RNAs, the specific recognition between DNA probes and targets depleted the electrostatic interaction between the DNA probes and cysAuNPs signal probe, leading to dispersed particles. This has rendered a remarkable shifting in the surface plasmon resonance (SPR) on the basis of visual color change of the RNA biosensor from red to purplish hue at the wavelength of 765 nm. Optical evaluation of SARS-CoV-2 RNA by means on reflectance transduction of the RNA biosensor based on cysAuNPs optical sensing probes demonstrated rapid response time of 30 min with high sensitivity, good linearity and high reproducibility across a COVID-19 RNA concentration range of 25 nM to 200 nM, and limit of detection (LOD) at 0.12 nM. qPCR amplification of SARS-CoV-2 viral RNA showed good agreement with the proposed RNA biosensor by using spiked RNA samples of the oropharyngeal swab from COVID-19 patients. Therefore, this assay is useful for rapid and early diagnosis of COVID-19 disease including asymptomatic carriers with low viral load even in the presence of co-infection with other viruses that manifest similar respiratory symptoms.

3.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2039872

ABSTRACT

Graphene and its derivatives show great potential for biosensing due to their extraordinary optical, electrical and physical properties. In particular, graphene and its derivatives have excellent optical properties such as broadband and tunable absorption, fluorescence bursts, and strong polarization-related effects. Optical biosensors based on graphene and its derivatives make nondestructive detection of biomolecules possible. The focus of this paper is to review the preparation of graphene and its derivatives, as well as recent advances in optical biosensors based on graphene and its derivatives. The working principle of face plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence resonance energy transfer (FRET) and colorimetric sensors are summarized, and the advantages and disadvantages of graphene and its derivatives applicable to various types of sensors are analyzed, and the methods of surface functionalization of graphene and its derivatives are introduced; these optical biosensors can be used for the detection of a range of biomolecules such as single cells, cellular secretions, proteins, nucleic acids, and antigen-antibodies; these new high-performance optical sensors are capable of detecting changes in surface structure and biomolecular interactions with the advantages of ultra-fast detection, high sensitivity, label-free, specific recognition, and the ability to respond in real-time. Problems in the current stage of application are discussed, as well as future prospects for graphene and its biosensors. Achieving the applicability, reusability and low cost of novel optical biosensors for a variety of complex environments and achieving scale-up production, which still faces serious challenges.


Subject(s)
Biosensing Techniques , Graphite , Nucleic Acids , Biosensing Techniques/methods , Colorimetry , Graphite/chemistry , Spectrum Analysis, Raman , Surface Plasmon Resonance
4.
Photonics ; 9(8), 2022.
Article in English | Scopus | ID: covidwho-2024007

ABSTRACT

For over 2 years, the coronavirus has been the most urgent challenge to humanity, and the development of rapid and accurate detection methods is crucial to control these viruses. Here, a 3D FDTD simulation of Au/SiO2/Au metal–insulator–metal (MIM) nanostructures as a biosensor was performed. The strong coupling between the two plasmonic interfaces in the Au/SiO2/Au cavity helped us to obtain relatively higher sensitivity. The attachment of SARS-CoV-2 changed the refractive index, which was used to detect SARS-CoV-2. Due to the higher overlapping of plasmonic mode with the environment of nano-discs, a higher sensitivity of 312.8 nm/RIU was obtained. The peak wavelength of the proposed structure shifted by approximately 47 nm when the surrounding medium refractive index changed from 1.35 (no binding) to 1.5 (full binding). Consequently, the SPR peak intensity variation can be used as another sensing mechanism to detect SARS-CoV-2. Finally, the previously reported refractive index changes for various concentrations of the SARS-CoV-2 S-glycoprotein solution were used to evaluate the performance of the designed biosensor. © 2022 by the authors.

5.
Biosens Bioelectron ; 206: 114163, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1719388

ABSTRACT

The ongoing outbreak of the COVID-19 has highlighted the importance of the pandemic prevention and control. A rapid and sensitive antigen assay is crucial in diagnosing and curbing pandemic. Here, we report a novel surface plasmon resonance biosensor based on laser heterodyne feedback interferometry for the detection of SARS-CoV-2 spike antigen, which is achieved by detecting the tiny difference in refractive index between different antigen concentrations. The biosensor converts the refractive index changes at the sensing unit into the intensity changes of light through surface plasmon resonance, achieving label-free and real-time detection of biological samples. Moreover, the gain amplification effect of the laser heterodyne feedback interferometry further improved the sensitivity of this biosensor. The biosensor can rapidly respond to continuous and periodic changes in the refractive index with a high resolution of 3.75 × 10-8 RIU, demonstrating the repeatability of the biosensor. Afterwards, the biosensor is immobilized by the anti-SARS-CoV-2 spike monoclonal antibodies, thus realizing the specific recognition of the antigen. The biosensor exhibited a high sensitivity towards the concentration of the antigen with a linear dynamic range of five orders of magnitude and a resolution of 0.08 pg/mL. These results indicate that this principle can be used as a rapid diagnostic method for COVID-19 antigens without sample labelling.


Subject(s)
Biosensing Techniques , COVID-19 , Biosensing Techniques/methods , COVID-19/diagnosis , Feedback , Humans , Lasers , SARS-CoV-2 , Surface Plasmon Resonance/methods
6.
Diagnostics (Basel) ; 11(6)2021 Jun 19.
Article in English | MEDLINE | ID: covidwho-1273401

ABSTRACT

The propagation of viruses has become a global threat as proven through the coronavirus disease (COVID-19) pandemic. Therefore, the quick detection of viral diseases and infections could be necessary. This study aims to develop a framework for virus diagnoses based on integrating photonics technology with artificial intelligence to enhance healthcare in public areas, marketplaces, hospitals, and airfields due to the distinct spectral signatures from lasers' effectiveness in the classification and monitoring of viruses. However, providing insights into the technical aspect also helps researchers identify the possibilities and difficulties in this field. The contents of this study were collected from six authoritative databases: Web of Science, IEEE Xplore, Science Direct, Scopus, PubMed Central, and Google Scholar. This review includes an analysis and summary of laser techniques to diagnose COVID-19 such as fluorescence methods, surface-enhanced Raman scattering, surface plasmon resonance, and integration of Raman scattering with SPR techniques. Finally, we select the best strategies that could potentially be the most effective methods of reducing epidemic spreading and improving healthcare in the environment.

7.
Front Chem ; 9: 672739, 2021.
Article in English | MEDLINE | ID: covidwho-1247843

ABSTRACT

Noble metal nanomaterials, such as gold, silver, and platinum, have been studied extensively in broad scientific fields because of their unique properties, including superior conductivity, plasmonic property, and biocompatibility. Due to their unique properties, researchers have used them to fabricate biosensors. Recently, biosensors for detecting respiratory illness-inducing viruses have gained attention after the global outbreak of coronavirus disease (COVID-19). In this mini-review, we discuss noble metal nanomaterials and associated biosensors for detecting respiratory illness-causing viruses, including SARS-CoV-2, using electrochemical and optical detection techniques. this review will provide interdisciplinary knowledge about the application of noble metal nanomaterials to the biomedical field.

8.
Biosensors (Basel) ; 11(6)2021 May 24.
Article in English | MEDLINE | ID: covidwho-1243953

ABSTRACT

Despite collaborative efforts from all countries, coronavirus disease 2019 (COVID-19) pandemic has been continuing to spread globally, forcing the world into social distancing period, making a special challenge for public healthcare system. Before vaccine widely available, the best approach to manage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is to achieve highest diagnostic accuracy by improving biosensor efficacy. For SARS-CoV-2 diagnostics, intensive attempts have been made by many scientists to ameliorate the drawback of current biosensors of SARS-CoV-2 in clinical diagnosis to offer benefits related to platform proposal, systematic analytical methods, system combination, and miniaturization. This review assesses ongoing research efforts aimed at developing integrated diagnostic tools to detect RNA viruses and their biomarkers for clinical diagnostics of SARS-CoV-2 infection and further highlights promising technology for SARS-CoV-2 specific diagnosis. The comparisons of SARS-CoV-2 biomarkers as well as their applicable biosensors in the field of clinical diagnosis were summarized to give scientists an advantage to develop superior diagnostic platforms. Furthermore, this review describes the prospects for this rapidly growing field of diagnostic research, raising further interest in analytical technology and strategic plan for future pandemics.


Subject(s)
Biosensing Techniques/instrumentation , COVID-19 Testing/instrumentation , SARS-CoV-2/isolation & purification , Animals , Biosensing Techniques/methods , COVID-19 Testing/methods , Colorimetry/instrumentation , Colorimetry/methods , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Enzyme-Linked Immunosorbent Assay/instrumentation , Enzyme-Linked Immunosorbent Assay/methods , Equipment Design , Humans , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , Point-of-Care Testing
9.
Sustain Chem Pharm ; 21: 100415, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1117694

ABSTRACT

The novel coronavirus pandemic has rapidly spread around the world since December 2019. Various techniques have been applied in identification of SARS-CoV-2 or COVID-19 infection including computed tomography imaging, whole genome sequencing, and molecular methods such as reverse transcription polymerase chain reaction (RT-PCR). This review article discusses the diagnostic methods currently being deployed for the SARS-CoV-2 identification including optical biosensors and point-of-care diagnostics that are on the horizon. These innovative technologies may provide a more accurate, sensitive and rapid diagnosis of SARS-CoV-2 to manage the present novel coronavirus outbreak, and could be beneficial in preventing any future epidemics. Furthermore, the use of green synthesized nanomaterials in the optical biosensor devices could leads to sustainable and environmentally-friendly approaches for addressing this crisis.

10.
Talanta ; 223(Pt 1): 121737, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1023757

ABSTRACT

A rapid test for detecting total immunoglobulins directed towards the nucleocapsid protein (N) of severe acute syndrome coronavirus 2 (SARS CoV-2) was developed, based on a multi-target lateral flow immunoassay comprising two test lines. Both test lines bound to several classes of immunoglobulins (G, M, and A). Specific anti-SARS immunoglobulins were revealed by a colorimetric probe formed by N and gold nanoparticles. Targeting the total antibodies response to infection enabled achieving 100% diagnostic specificity (95.75-100, C.I. 95%, n = 85 healthy and with other infections individuals) and 94.6% sensitivity (84.9-98.9, C.I. 95%, n = 62 SARS CoV-2 infected subjects) as early as 7 days post confirmation of positivity. Agreeing results with a reference serological ELISA were achieved, except for the earlier detection capability of the rapid test. Follow up of the three seroconverting patients endorsed the hypothesis of the random rise of the different immunoglobulins and strengthened the 'total antibodies' approach for the trustworthy detection of serological response to SARS CoV-2 infection.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/immunology , Immunoassay/methods , Adult , Antibody Specificity , Colorimetry , Early Diagnosis , Equipment Design , Gold , Humans , Immunoglobulins/analysis , Male , Metal Nanoparticles , Middle Aged , Nucleocapsid/chemistry , Sensitivity and Specificity
11.
BMC Infect Dis ; 20(1): 860, 2020 Nov 19.
Article in English | MEDLINE | ID: covidwho-934260

ABSTRACT

BACKGROUND: The accuracy of a new optical biosensor (OB) point-of-care device for the detection of severe infections is studied. METHODS: The OB emits different wavelengths and outputs information associated with heart rate, pulse oximetry, levels of nitric oxide and kidney function. At the first phase, recordings were done every two hours for three consecutive days after hospital admission in 142 patients at high-risk for sepsis by placing the OB on the forefinger. At the second phase, single recordings were done in 54 patients with symptoms of viral infection; 38 were diagnosed with COVID-19. RESULTS: At the first phase, the cutoff value of positive likelihood of 18 provided 100% specificity and 100% positive predictive value for the diagnosis of sepsis. These were 87.5 and 91.7% respectively at the second phase. OB diagnosed severe COVID-19 with 83.3% sensitivity and 87.5% negative predictive value. CONCLUSIONS: The studied OB seems valuable for the discrimination of infection severity.


Subject(s)
Biosensing Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Sepsis/diagnosis , Aged , Aged, 80 and over , Algorithms , Area Under Curve , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/pathology , Coronavirus Infections/virology , Early Diagnosis , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , ROC Curve , SARS-CoV-2 , Sensitivity and Specificity , Severity of Illness Index
12.
Biosens Bioelectron ; 167: 112494, 2020 Nov 01.
Article in English | MEDLINE | ID: covidwho-694826

ABSTRACT

G-quadruplex is a non-canonical nucleic acid structure formed by the folding of guanine rich DNA or RNA. The conformation and function of G-quadruplex are determined by a number of factors, including the number and polarity of nucleotide strands, the type of cations and the binding targets. Recent studies led to the discovery of additional advantageous attributes of G-quadruplex with the potential to be used in novel biosensors, such as improved ligand binding and unique folding properties. G-quadruplex based biosensor can detect various substances, such as metal ions, organic macromolecules, proteins and nucleic acids with improved affinity and specificity compared to standard biosensors. The recently developed G-quadruplex based biosensors include electrochemical and optical biosensors. A novel G-quadruplex based biosensors also show better performance and broader applications in the detection of a wide spectrum of pathogens, including SARS-CoV-2, the causative agent of COVID-19 disease. This review highlights the latest developments in the field of G-quadruplex based biosensors, with particular focus on the G-quadruplex sequences and recent applications and the potential of G-quadruplex based biosensors in SARS-CoV-2 detection.


Subject(s)
Betacoronavirus , Biosensing Techniques/methods , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , G-Quadruplexes , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Biosensing Techniques/trends , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/trends , Colorimetry , Electrochemical Techniques , Fluorescent Dyes , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL